Assessment Task 3-Case Study Risk Management Plan

Executive summary

Risk management plan is one of the effective plans in the chemical manufacturing industry. It is capable of providing a comprehensive management mechanism for handling risk and uncertainty in organizations. The diversity of risk management plan has so variation that not only a product process or project, the entire organization can be assessed with the features of risk management plan. The plan is developed to entertain the problems in the identified case of chemical manufacturing industry; it will assess the ongoing situation and flaws to encounter the risk .In addition, a number of standards will be followed for designing an effective and efficient risk management plan, the standards include; Work Health and Safety Regulation 2017 (NSW), IEC/ISO 31010:2009, AS/NZS ISO 31000, and Work Health and Safety Act 2011 No 10 (NSW).

A misfortune happened on 15th November 2014 when 24000 pounds of toxic gas got released from chemical facility in Texas. It resulted in casualty of one supervisor, three workers and damaged the chemical manufacturing plan. Accident analysis had revealed that it was flawed engineering to be held primarily responsible for the chemical accident in the industry . In addition to that, the ventilation system was poor, safety and health conditions at workplace were not effective and management had poor core values or vision incorporated in their work culture against hazards of chemical manufacturing industrial process. The project boundaries are quite versatile in nature because of project scope. Foremost stage of project implementation would begin from WHS manager's recruitment in the chemical manufacturing factory. An effective training based on workplace health and safety for duration of three month would be held for staff at chemical manufacturing plant. After getting occupational safety and health training, the staff would start working for identification and replacement of flawed engineering design as it would

be safe working at the plant. Overall stakeholder's involvement would increase as well that eventually increases productivity and profitability of chemical manufacturing plant. The identification of risks for the chemical manufacturing industry can be effectively examined and analysed on the basis of the standards provided by AS/NZS ISO 31000:2009. The standards are designed for identifying and assessing risks along with their impact on the process and procedures. In addition, the risk assessment process will follow the criteria of IEC/ISO 31010:2009 and analysis process of Failure Mode and Effect Analysis (FMEA) for hazard assessment

Table of Contents

Executive	summary	2
1. Introd	duction	5
1.1. P	Project Information	6
1.2. P	Project Scope & Boundaries	6
1.3. P	Project Objectives	7
1.4. R	Risk Management Process	8
2. Cons	ultation & Communication Strategies	9
2.1. In	nternal Communications	9
2.2. E	External Communications	11
3. Estab	blishing Context	13
3.1. R	Risk Management Context	14
3.2. R	Risk Criteria	15
3.3. S	Stakeholder Analysis	17
3.4. P	Project Rules	18
3.5. P	Project Roles and Responsibilities	18
3.6. P	Processors	19
3.6.1	. Site Inductions	19
3.6.2	. Safe Work Method Statements (SWMS)	20
4. Risk	Assessment Process	20
4.1. R	Risk Identification	20
4.1.1	. Identification Method	21
4.1.2	. Risk Register	21
4.2. R	Risk Analysis	21
4.2.1	. Analysis Method	22
4.3. R	Risk Evaluation	22
4.3.1	. Hierarchy of Control (HOC)	22
4.3.2	. Risk Acceptance Criteria	22
5. Risk	Treatment	24
5.1. P	Probable Treatment Options	24
5.2. E	Effective Treatment Options	25
6. Risk	Monitoring & Review	26
6.1. P	Processes	26
7. Discu	ssion	27
7.1. L	Lessons Learnt	27
7.2. E	Evaluation of RPN & Criticality	28
Conclusio	n	29
8. Refer	rences	30
9. Appe	endix	33
Risk and	alysis method	33
Process	of evaluation	34
Process	to step	35
PROBA	ABILITY RATING:	37
Re-eval	uation	38

Assessment Task 3-Case Study Risk Management Plan

1. Introduction

Risk management plan is one of the effective plans in the chemical manufacturing industry. It is capable of providing a comprehensive management mechanism for handling risk and uncertainty in organizations. The diversity of risk management plan has so variation that not only a product process or project, the entire organization can be assessed with the features of risk management plan (Mogos, Fredriksson, & Alfnes, 2019). A critical glance at the risk management plan has revealed that, with the inclusion of RMP, it becomes far time easier to highlight errors in the project. The waywardness in the results or outcomes of the project gets low as possible. Decision making is empowered by risk management plan for taking critical decision on diverse and complex situations (Uhl, & Gollenia, 2016). An efficient communication plan is extended to the whole human resource of the manufacturing industry about organizational values, vision, targets and objectives. There are three essential stages of risk management plan implementation. Input stage contains project scope, planning, cost management, enterprise, and environmental and organizational process assets (Rust, Flood, & McCaffery, 2016). Tools and techniques such as meetings and analysis are applied on input determinants to produce output in the forms of risk management plan. The plan is developed to entertain the problems in the identified case of chemical manufacturing industry; it will assess the ongoing situation and flaws to encounter the risk (Alanen, & Salminen, 2016). In addition, a number of standards will be followed for designing an effective and efficient risk management plan, the standards include; Work Health and Safety Regulation 2017 (NSW), IEC/ISO 31010:2009, AS/NZS ISO 31000, and Work Health and Safety Act 2011 No 10 (NSW).

1.1. Project Information

A misfortune happened on 15th November 2014 when 24000 pounds of toxic gas got released from chemical facility in Texas. It resulted in casualty of one supervisor, three workers and damaged the chemical manufacturing plan. Accident analysis had revealed that it was flawed engineering to be held primarily responsible for the chemical accident in the industry (Alston, 2017). In addition to that, the ventilation system was poor, safety and health conditions at workplace were not effective and management had poor core values or vision incorporated in their work culture against hazards of chemical manufacturing industrial process (Kockmann, et.al. 2017). After summing up the entire given case, a risk management plan would be presented to rectify all the potential risks present in the chemical manufacturing industry. The salient features of risk management plan would be implemented in the form of project to eradicate flawed engineering design, poor ventilation, and weak workplace safety and weak management system at the chemical manufacturing industry (Ktani Mavi, Goh, & Kiani Mavi, 2016).

1.2. Project Scope & Boundaries

The scope of project is as follows;

- Identification and replacement of flawed engineering design in chemical manufacturing plant.
- Installation of efficient ventilation system at plant.
- Effective management system for good administration & monitoring of staff, process and products.
- Inclusion workplace health & safety program for staff working at chemical manufacturing plant.

The project boundaries are quite versatile in nature because of project scope. Foremost stage of project implementation would begin from WHS manager's recruitment in the chemical manufacturing factory. An effective training based on workplace health and safety for duration of three month would be held for staff at chemical manufacturing plant (Gardetti, & Torres, 2017). After getting occupational safety and health training, the staff would start working for identification and replacement of flawed engineering design as it would be safe working at the plant (Villa, et.al. 2016). The quality enhancement and evaluation & monitoring team of engineers would be formed for installation of effective ventilation system and testing of new engineering design installed in place of flawed engineering design at the plant. A team of senior managers and engineers would be brought under direct governance of CEO of the manufacturing to ensure efficient management system. The entire financial budget for this project scope & boundaries are 100000\$, for each project scope 25000 \$ would be given. The other resources of industry would be left at disposal of project in charge to comprehensively complete the proposed risk management plan.

1.3. Project Objectives

Project objectives for the given risk management plan are as follows;

- To incorporate the values of chemical manufacturing industry in risk analysis case and development of risk management plan.
- To identify stakeholders, boundaries and uncertainties in chemical engineering project & system.
- To assess, evaluate, priority and treat risks in chemical engineering projects & systems lifecycle.

To develop risk management plan for the selected case in corresponding to IEC/ISO 31010:2009 and AS/NZS ISO 31000 risk management standards.

1.4. Risk Management Process

Figure 1 Risk Management Process (RMP)

It can be seen from the above figure that the first and foremost step of the RMP plan is to establish the context of risk. In the given case, the context of risk was associated with the poor conditions of chemical manufacturing plant. There are total four risks in numbers that have been identified and would undergo risk analysis and evaluation for best of the best risk treatment (Brindley, 2017). The entire risk assessment would be strongly monitored and reviewed for feedback, continuous improvement, and whistle blowing and for strategic management. In addition to that, entire risk management plan would be communicated to all layers of management from manager to staff in all departments (Clark, et.al. 2016). This would create an

employee ownership of the risk management plan and employee engagement would also increase at the chemical manufacturing plant. Ultimately, it would deliver strong management functional units that are capable of achieving desired risk management plan objectives.

2. Consultation & Communication Strategies

In the light of risk management plan for established context, the consultation and communication strategy would be comprised of both internal and external communication factors. The unfortunate incident that happened in the chemical plant was devastating news for every stakeholder of the chemical manufacturing industry (McDonald, et.al. 2018). Therefore, all stakeholders need to play their true role by contributing positively in the risk management plan through advice, action and appropriate measures. Overall stakeholder's involvement would increase as well that eventually increases productivity and profitability of chemical manufacturing plant.

2.1. Internal Communications

The table below is presenting information about the elements of internal communication process;

Involvement	Process	Time	Explaining strategy
Senior Engineer	Installation &	Weekly	The chemical plant would be assessed from each and
	Maintenance		every aspect to identify all flawed designs. These
			designs would be replaced by new ones after complete
			testing and producing results. Weekly progress of
		1	

Table 1 - Internal Communications

			design installation would be reported to CEO.
Work health &	Workplace safety	Weekly	A certification program for staff on WHS would be
safety manager			created. It would be conducted inside the factory at the
			chemical plant. This training would comprise of
			lectures, videos, guest speaker lectures, manuals and
			workshops. Only after passing the WHS internal exam,
			the staff would be allowed to work in the plant. There
			would be only two chances for passing the exam
			otherwise the staff would be transferred to general
			management department. Weekly progress of training
			would be reported to CEO.
General manager	Effective	Weekly	The management system would now be based on
	management		employee engagement. New remuneration packages
			and perks & privileges would be introduced for
			employees working at the plant. The performance
			would of employees would be monitored on weekly
			basis and it would be reported to CEO as well.
Ventilation team	Good ventilation	Weekly	An entire new ventilation design would be installed for
			plant to obtain better and maximum ventilation for the
			chemical plant against engineering processes.
Q&E engineer	Monitoring &	Monthly	All the four identified risks mentioned in the project
•	Evaluation		scope section would be under continuous monitoring
			and evaluation of Q & E team. The achieved results of
			all departments would be validated and verified.
			Critical analysis results report would presented to CEO

			only.
Staff	Daily tasks	Weekly	Performance of daily tasks given by line managers

2.2. External Communications

The table below is presenting information related to external communication process designed for the project;

Involvement	Process	Time require <mark>d</mark>	Explaining strategy
Vendors	Provision of major	Quarterly	All the engineering parts,
	engineering parts &		components and equipment would be
	equipment	NV	provided to the chemical plant for
			limiting the flawed designs, poor
			ventilation system. Vendor would
			share its demand and expectations
			from new RMP as well. In a similar
			fashion the technical staff would
			work closely with vendors to secure
			precise and accurate engineering
			designs for the new chemical plant
			site.
Suppliers	Supplying general items	Quarterly	The reporting materials for taking
			daily, weekly and monthly logs from
			the entire department to measure

Table 2 - External Communications

			their performance. The gap of
			demand and supply between
			management and supplier reduces.
			Communication among supplier and
			manager gets more frequent and
			effective to ensure uniformity of
			management functions.
Government	Legal Compliance	Bi-yearly	Strong health and safety program for
			workplace would be designed and it
			would be share with government
			officials to ensure workers are
			provided with neat, clean and
			hygienic workplace to stay safe and
			prevented from industrial accidents.
Environmental	Environmental	Monthly	The environment conditions have to
inspectors	Compliance		be checked properly that any
			engineering manufacturing process is
			causing land, water, air or sound
			pollution in the environment. The
	X		adverse effects on environment
	· ·		would lead to the heavy taxes, fines
·			and even sanctions on chemical plant
			by government.

3. Establishing Context

The stakeholders for this risk management plan are comprised of technical and non-technical human resource of the staff, CEO, vendors & supplier and corporate governance (for legal and environment assessment) of the chemical faculty (Tarasov, & Popov, 2018). Human resource team is comprised of engineers, managers, labour and many more; they would be main driving force for a successful implementation of risk management plan. However, there would be some constraints from this relevant stakeholder in the implementation of risk management plan. The staff would show resistance in learning workplace health safety training program (Hristozov, et.al. 2016). They would reveal their unwillingness to obtain this skill or failed to appreciate the need and importance of workplace health and safety training program. CEO of the chemical manufacturing industry would have to play the role of a leader in the given complex situation (Yan, & Hino, 2016). The CEO needs to create massive awareness from management to staff level in recognizing the need of workplace safety and health training program. Oral communication skills, analytical and sharp observation skills of CEO would play a pivotal role in convincing its HR staff on accepting and ownership of risk management plan.

The vendors and supplier are also major stakeholders in this complex situation. They need to be taken in full confidence that high standard and good quality of engineering parts, designs, and equipment and management resources for bringing security, safety, quality output and efficiency of the chemical manufacturing plant (Reim, Parida, & Sjödin, 2016). Vendors and suppliers would be made member of a consultation and advisory board to work closely on meeting the aims and objectives of risk management plan. Constraint from vendor and supplier end would be slow process of their payments, delay in file processing and improper specifications of things given to them (Tuptuk, & Hailes, 2018). The CEO has to come forward in this regard again

would be key to establishing strong working relationship between vendors & supplier and with the company managers. In this way quick payments and fast file processing along with proper specification of things would be handed over to the vendor and supplier. This constraint would be easily getting rid of.

In addition to that, corporate governance is also an important stakeholder in the implementation of risk management plan. The environmental engineer and work health and safety manager would hold important meetings with government officials to obtain satisfactory certificates of workplace safety and environmental assessment (Aqlan, & Lam, 2016). Only constraint in this stakeholder function is failure in meeting environmental and workplace safety compliance prescribed by the government. It is therefore, it would be the prime duty of company environmental engineer and workplace safety manager to ensure environmental friendly industrial operation and clean safer and secure workplace for health hygiene for all the employees working at the chemical manufacturing plant (Stoessel, 2020).

3.1. Risk Management Context

The risk management context is a combination of external and internal context. In the external context of the chemical manufacturing plant, the company would operate in a pollutant free industrial environment and safe workplace for its employees (Bakand, & Hayes, 2016). It would facilitate the risk management plan to accomplish its one and major objective of providing safe workplace training programs for employees. Politically the company would be working for generating revenue for contributing in national economy (Sholl, & Lively, 2016). Socially the company would invest in social programs for betterment of community in terms of donations, charity function, funds for increasing education and improving health services in the country

moreover, by starting green environment programs through reforestations and forestation. Legally, the law of the land would be observed in full obedience and compliance, there would be no breach of law on legal grounds (Scheibe, & Blackhurst, 2018).

The second part or entity of risk management context combination is internal context. There are following consideration that would be made in internal risk management context.

- Focus on risk objectives with risk managing strategies to prevent chemical explosions in future at the chemical plant.
- Good governance through effective management for strong company structure, defined roles for staff and accountability in case of risk management failure.
- Promoting employee engagement by investing on employees through workplace safety and health training programs.
- Changing the engineering design flaws and installation of good ventilation system to meet engineering compliance obligations.
- Appreciating risk tolerance by including it in business mission & vision of the company (Clomburg, Crumbley, & Gonzalez, 2017).

3.2. Risk Criteria

Risk criteria are a type of criteria that enables chemical manufacturing company in taking decision or making judgement on the implications of risk under assessment. It would be based on internal and external risk management context and are constantly under review for continuous improvement and strategic plan. In the given context of the risk management plan for chemical manufacturing plant, the below mentioned tables provides the risk criteria.

Table 3. Risk assessment criteria at chemical manufacturing plant

Impact	Descriptor	Definition
Score		
1	Negligible	Minimum injury or least intervention needed at chemical manufacturing plant
2	Minor	Minor injury, need three days off, 3 days stay in hospital
3	Moderate	Moderate injury, 4-10 days off, same duration of stay in hospital, reportable incident
4	Major	Major injury causing long term disability, need holidays more than 15 days, same duration of stay in hospital
5	Catastrophic	Injury causing death to large number of staff working at the plant

Table 4. A risk matrix for risk managers at chemical manufacturing plan

Impact Score	Descriptor	Frequency
•	-	
1	Rare	Never happen, least probability
2	Unlikely	It may happen lesser possibility
3	Possibly	Might happen less probability
4	Likely	It will happen but not due to persisting issue: high probability
5	Almost	Highest probability, definitely happen
	Certain	

Table 5. Risk Assessment criteria

Impact	Descriptor	Action Needed	Review
Score			
1-7	Low	Accept Risk	Bi yearly through engineers, work safety managers,
			ventilation monitoring team

8-15	Medium	Management role	Monthly by general managers at meeting with CEO
16-25	High	CEO decision	Immediet, directly reported to CEO and the matter is
			formally discussed with final implementing deicison in
			the ligh of risk management plan to counter the potential
			threats.

3.3. Stakeholder Analysis

For the given risk management plan, stakeholder analysis has identified all the involved employees before the beginning of the project. After identification, the employees according to their expertise, experience and skills are grouped to seek their participation, interest and influence according to the need of the project. It has become easy to communicate with stakeholders (Clomburg, Crumbley, & Gonzalez, 2017).

Table 6 - Stakeholders analysis

СЕО	Head of Project
Ventilation designers	Vendors
Engineers	Supplier
Quality enhancement & inspection engineers	Consultant
WHS training manager	Financer
	Corporate Governance

Table 7 - Stakeholders analysis

	Involvement needed	Explaining strategy
	CEO	Lead the entire risk management plan and would
Internal		monitor it. Takes reports from managers and performs

		evaluation.
	Ventilation designer	To design good quality ventilation for chemical plant
	WHS manager	To train management on occupational safety and health
		at workplace for securing them against chemical
		accidents at the plant.
	Engineers	To produce flawless engineering designs of chemical
		plant to prevent any sort of chemical explosions.
	Vendors	To supply desired items for chemical manufacturing
		plant.
	Suppliers	To supply desired items for chemical manufacturing
External		plant.
	Consultant	To test and validate the risk management plan designed
		for chemical manufacturing plant.
	Financer	To provide capital for the risk management plan
	Government and regulation	To ensure the chemical manufacturing plant is meeting
	makers	the legal and environmental compliance.

3.4. Project Rules

The rules and regulations of chemical manufacturing plant can be seen in appendix. Guidelines have been taken into account of risk management plan as it is playing a great role in prevention of chemical manufacturing plant hazards.

3.5. Project Roles and Responsibilities

Following employees have specific roles and responsibilities in this risk management plan.

Table 8- Project roles and responsibilities

Concerned authorities	Project roles
Engineering department	Identifying hazards of engineering design flaws
Workers	Recording events of health and safety of conveyer use
Warehouse team	Recording hazards associated with dispatching using brackets
	for throat
Quality enhancement & evaluation	Performance evaluation and examining fulfilment of
team	regulations.
Manufacturing department	Staffing to warehouse ventilator team for measuring
	consequences.
Workplace health and safety	Evaluating safety precautions at workplace.
department	

3.6. Processors

3.6.1. Site Inductions

All the work force staff, guests or the subcontractors must attempt a site acceptance so as to complete the development and contraction work regarding to the time (Meyer, & Reniers, 2016). The procedure of induction varies upon three stages:

- 1. Visual investigation of the hurricane line General Safety Induction Card
- 2. Site conference directed by a designer

Marking onto the applicable SWMS for the fundamental subcontractor or the organization before beginning or commencing the construction or development of work (Clomburg, Crumbley, & Gonzalez, 2017).

3.6.2. Safe Work Method Statements (SWMS)

The statement of Safe Work Method forms a vital proportion of the hazard that board inside a development venture (Scheibe, & Blackhurst, 2018). SWMS will be produced for each development action. It must incorporate all the accompanying:

- Actions of contractors.
- Evaluation of possible damages and risk before and after every task.
- Mitigation procedures to reduce probability of the hazard (Sholl, & Lively, 2016).

4. Risk Assessment Process

The identification of risks for the chemical manufacturing industry can be effectively examined and analysed on the basis of the standards provided by AS/NZS ISO 31000:2009. The standards are designed for identifying and assessing risks along with their impact on the process and procedures. In addition, the risk assessment process will follow the criteria of IEC/ISO 31010:2009 and analysis process of Failure Mode and Effect Analysis (FMEA) for hazard assessment (Bakand, & Hayes, 2016).

4.1. Risk Identification

The purpose of the project is to emphasize on the ventilation structure of chemical manufacturing plant to work on the safety hazards, assessment of the risks would be made through evaluating and monitoring the activities of management, staff and factors involved in generating risk. It would allow to identify and handle the monitored risks by means of the most effective and suitable methods (Stoessel, 2020).

4.1.1. Identification Method

Risk identification method will be designed on the fulfilment of IEC/ISO 31010:2009 suggested standards. The activities of chemical manufacturing industry will be corresponding to the assistive techniques suggested in the document. A risk register will be made for recording the analysed risks and their consequences (Aqlan, & Lam, 2016).

4.1.2. Risk Register

Documentation of the risk register will be made through distinguishing the dangers and causes of blast in the manufacturing industry. This would help to work on the identified causes i.e. ventilation issues, management lack of responsibility and staff unawareness about the dangers. In this way, the risk surrounded to the manufacturing industry would be entertained with potential. The project report will be used as a sample for dealing with the risks to the plant (Tuptuk, & Hailes, 2018).

4.2. Risk Analysis

Analysis of the risks are demanding contraction to all the issues including health and physical concerns to every individual working in the chemical manufacturing plant. However, to design the mitigation strategy it is essential to evaluate the working activities and methods of improvisation the norms of working within the plant (Hristozov, et.al. 2016). The causes and process of risk evaluation to state the causes interlinked with the activities are presented in Appendix A. the measures to control the evaluated method are listed in terms of the methods provided in appendix.

4.2.1. Analysis Method

It is stated that for identifying and applying appropriate strategy to mitigate and eliminate risk it is essential to have appropriate and in-depth information. In this way, plot to overcome the risk is designed and different perspectives to manage the needs of risk are gathered with creative ideologies by means of enough and demanded knowledge (McDonald, et.al. 2018). Observation of the performance in terms of various field activities will be made to inspect the performance and risk to individual. Probability rating is made on the basis of FMEA assumptions for the consequences associated with every risk (Tarasov, & Popov, 2018).

4.3. Risk Evaluation

4.3.1. Hierarchy of Control (HOC)

Risk evaluation process for the designed project is following measures of hierarchy of control, however, the impacts and severity of risk is stated in terms of stages given in the table below.

Stages	Evaluation
Elimination	Removing hazard
Substitution	Identifying the cause of hazard and replacing it appropriate option
Isolation	Enclosing hazard
Engineering	Evaluation based redesigning
Administration	Controlling the procedures and eliminating hazard
Personal protective consideration	Applying barriers

Table 9 - HOC

4.3.2. Risk Acceptance Criteria

The criteria of risk acceptance states the methods and procedures for overcoming the identified risks, the needs of the chemical manufacturing industry are evaluated for developing this criteria. The risk acceptance criteria is assuming all the issues, harms and consequences to individual, engineers and management (McDonald, et.al. 2018). The treatment needs and factors integrated to the activities are assumed for handling improper events, areas of management, acceptance level for the risk and products or chemicals that are manufactured in the plant. Practically, the criteria is designed for making the tasks risk free and as low as possible for the chemical manufacturing plant (Brindley, 2017). The level of acceptance suggested by the standards of IEC/ISO 31010:2009 and accepted for the project are presented in the figure below;

Figure 2 Acceptance for risk or Risk tolerance

5. Risk Treatment

The process of risk treatment is managed and formalised on the basis of most effective available options for treating the probability of risk. However, the mechanism of risk treatment is explained in the headings below;

5.1. Probable Treatment Options

The possible chances of reducing the causes of risk must be identified and treated with mandatory actions. Meanwhile, consideration must be given to the personal involvement in the activities of identified risks for stating and preventing the causes of risk occurrence (Villa, et.al. 2016)

(Villa, et.al. 2016). The possible chances for improving the activities in the chemical manufacturing industry are; competency checks, training to the staff, rules and policies for administration of activities, and appropriate use of the chemical equipment. Basic consideration for treating the risks of chemical industry are presented in the figure below, these considerations are focused for eliminating, mitigating and overcoming the risks (Gardetti, & Torres, 2017).

Figure 3 Treatment options

5.2. Effective Treatment Options

The evaluation and management of addressed risks is made on the basis of chemical manufacturing industry's case context. It is mandatory for the plant to link all the available options and mechanism for the risk addressed. Furthermore, the potential of risk occurrence can be minimised through determining the impact of risk on individual and to the overall plant (Rust, Flood, & McCaffery, 2016). The treatment options would allow to state the strengths, weaknesses, costs, changes and monitoring aspects for playing role and responsibilities in the plant. It is stated that the investigation and examination process mused be appropriately managed

by means of stating the likelihood of risk (Mogos, Fredriksson, & Alfnes, 2019). Therefore, on the basis of blast danger its impact on the overall plant and individual is measured. It is decided in the formation of risk management plant to consider avoidance of risk, mitigating risk, transferring and retention of risk as priority (Uhl, & Gollenia, 2016). In future, avoidance of risk will help to analyse all the possibilities of risk by means of analysing the risk. In addition, causes and consequences would get eliminated effectively to mitigate the possibilities of risk occurrence. In this way, effective decision making from the end of management will be shown and risk will have no impact on the decision making process (Alanen, & Salminen, 2016).

6. Risk Monitoring & Review

6.1. Processes

Project implementation is interconnected by means of reviewing and monitoring mechanism. Below table is explaining all about the process of reviewing and monitoring.

Involved authorities	Process	Time	Management of activity
		required	
Department of	This process	On daily	This required the staffing and guiding which
manufacturing and	involves the	basis	helps to improve the contribution of the
packaging	checking of required		individuals.
•	information		
Department of	Staffing of chemical	On	Evaluating procedures and reducing chances
manufacturing	manufacturing	monthly	of physical hazards through using machinery.
	plants	basis	

Table 10 - Process

It involves the w	vare	Dispatching and	On daily	This process required the activity of
house team		making if box	basis	examining all the cases regarding to allergies
				and asthma
Department	of	Hazards of	On weekly	This involves the workers conduction in
manufacturing		recording and	basis	altered undertakings or activities.
		accessing		Furthermore, the activity involves the
				equipment performance.
Designers	for	Equipment's and	On weekly	Review of SWMS
equipment's		machines for the	Basis	
		purpose of		
		evaluation		
Department	of	Concerns regarding	After the	This process involves the evaluation of
manufacturing		to the end item or	completion	product quality and capacity.
		product	of product	
Department	of	Process of	On	Examining and evaluation of performance
manufacturing d	and	performance	annually	for the regulations.
packaging		evaluation for each	basis	
		and everyone		

7. Discussion

7.1. Lessons Learnt

Risk management is defined as the process which helps both the individuals and company to learn about the impacts regarding to risks. The development plan helps to reduce the probabilities of engaging and occurrence of individual which highlight the strength and mission of the organization (Kockmann, et.al. 2017). The mission of the organization involves the hazard free and safe workplace. The risk potential gather the knowledge about the FMEA and HOC application considering the law of nation. It is individual responsibility to recognize the roles and subjective abilities to safe individual from harm. Physical safety measures can be fulfilled and attained by paying concern towards the safety needs (Kiani Mavi, Goh, & Kiani Mavi, 2016).

7.2. Evaluation of RPN & Criticality

Risk impacts were highly connected with the usage of machine and equipment's at chemical manufacturing plant. It is found that due to moving the machines individuals can also get injuries. It is very necessary to carry machinery and equipment's that provide supports rather than creating troubles and difficulties in the process. All the impacts and effects of risks can be vanished by means of proper manning and identifying the risk effectively (Gardetti, & Torres, 2017).

Conclusion

To develop risk management plan for the selected case in corresponding to IEC/ISO 31010:2009 and AS/NZS ISO 31000 risk management standards. Project Objectives Project objectives for the given risk management plan are as follows; To incorporate the values of chemical manufacturing industry in risk analysis case and development of risk management plan. The risk management context is a combination of external and internal context. It is decided in the formation of risk management plant to consider avoidance of risk, mitigating risk, transferring and retention of risk as priority. It can be seen from the above figure that the first and foremost step of the RMP plan is to establish the context of risk. Ultimately, it would deliver strong management functional units that are capable of achieving desired risk management plan objectives. Risk management plan is one of the effective plans in the chemical manufacturing industry. Tools and techniques such as meetings and analysis are applied on input determinants to produce output in the forms of risk management plan. In addition to that, entire risk management plan would be communicated to all layers of management from manager to staff in all departments. In the given context of the risk management plan for chemical manufacturing plant, the below mentioned tables provides the risk criteria. Therefore, all stakeholders need to play their true role by contributing positively in the risk management plan through advice, action and appropriate measures. In addition to that, corporate governance is also an important stakeholder in the implementation of risk management plan. However, there would be some constraints from this relevant stakeholder in the implementation of risk management plan. It would facilitate the risk management plan to accomplish its one and major objective of providing safe workplace training programs for employees.

8. References

- Alanen, J., & Salminen, K. (2016). Systems Engineering Management Plan template V1. Res. Rep. VTT.
- Alston, G. (2017). How Safe is Safe Enough?: Leadership, Safety and Risk Management. Routledge.
- Aqlan, F., & Lam, S. S. (2016). Supply chain optimization under risk and uncertainty: A case study for high-end server manufacturing. *Computers & Industrial Engineering*, 93, 78-87.
- Bakand, S., & Hayes, A. (2016). Toxicological considerations, toxicity assessment, and risk management of inhaled nanoparticles. *International journal of molecular sciences*, 17(6), 929.
- Brindley, C. (2017). Supply chain risk. Routledge.
- Clark, J. H., Farmer, T. J., Herrero-Davila, L., & Sherwood, J. (2016). Circular economy design considerations for research and process development in the chemical sciences. *Green Chemistry*, 18(14), 3914-3934.
- Clomburg, J. M., Crumbley, A. M., & Gonzalez, R. (2017). Industrial biomanufacturing: the future of chemical production. *Science*, *355*(6320), aag0804.
- Gardetti, M. A., & Torres, A. L. (2017). Sustainability in fashion and textiles: values, design, production and consumption. Routledge.
- Hristozov, D., Gottardo, S., Semenzin, E., Oomen, A., Bos, P., Peijnenburg, W., ... & Scott-Fordsmand, J. J. (2016). Frameworks and tools for risk assessment of manufactured nanomaterials. *Environment international*, 95, 36-53.

- Kiani Mavi, R., Goh, M., & Kiani Mavi, N. (2016). Supplier selection with Shannon entropy and fuzzy TOPSIS in the context of supply chain risk management.
- Kockmann, N., Thenée, P., Fleischer-Trebes, C., Laudadio, G., & Noël, T. (2017). Safety assessment in development and operation of modular continuous-flow processes. *Reaction Chemistry & Engineering*, 2(3), 258-280.
- McDonald, B. C., de Gouw, J. A., Gilman, J. B., Jathar, S. H., Akherati, A., Cappa, C. D., ... & Cui, Y. Y. (2018). Volatile chemical products emerging as largest petrochemical source of urban organic emissions. *Science*, 359(6377), 760-764.
- Meyer, T., & Reniers, G. (2016). *Engineering risk management*. Walter de Gruyter GmbH & Co KG.
- Mogos, M. F., Fredriksson, A., & Alfnes, E. (2019). A production transfer procedure based on risk management principles. *Journal of Global Operations and Strategic Sourcing*.
- Reim, W., Parida, V., & Sjödin, D. R. (2016). Risk management for product-service system operation. *International Journal of Operations & Production Management*.
- Rust, P., Flood, D., & McCaffery, F. (2016). Creation of an IEC 62304 compliant software development plan. *Journal of Software: Evolution and Process*, 28(11), 1005-1010.
- Scheibe, K. P., & Blackhurst, J. (2018). Supply chain disruption propagation: a systemic risk and normal accident theory perspective. *International Journal of Production Research*, *56*(1-2), 43-59.
- Sholl, D. S., & Lively, R. P. (2016). Seven chemical separations to change the world. *Nature*, *532*(7600), 435-437.
- Stoessel, F. (2020). Thermal safety of chemical processes: risk assessment and process design. John Wiley & Sons.

- Tarasov, I. V., & Popov, N. A. (2018). Industry 4.0: Production factories transformation. *Strategic decisions and risk management*, (3), 38-53.
- Tuptuk, N., & Hailes, S. (2018). Security of smart manufacturing systems. *Journal of manufacturing systems*, 47, 93-106.
- Uhl, A., & Gollenia, L. A. (Eds.). (2016). A handbook of business transformation management methodology. Routledge.
- Villa, V., Paltrinieri, N., Khan, F., & Cozzani, V. (2016). Towards dynamic risk analysis: A review of the risk assessment approach and its limitations in the chemical process industry. *Safety science*, 89, 77-93.
- Yan, X. L., & Hino, R. (Eds.). (2016). Nuclear hydrogen production handbook. CRC press.

9. Appendix

Risk analysis method

	HFMEA Step 4 - Ha	Step 4 - Hazard Analysis								HFMEA Step 5 - Identify Actions and Outcomes			
Failure Mode: First Evaluate failure mode before determining potential	Potential Causes	rity	ability lity	Score	le Point mess?	ing Control un	stability	lysis 2pea	Action Type (Control, Accept,	Actions or Rationale for Stopping	Outcome Measure	Person sponsible	nagement ncurren ce
causes		Sever	Proba	Haz	Single Weak	Existi Measu	Detect	Proce	Eliminate)			Rea	Con
				_	-								

Figure 4 4.2 Risk analysis method

Process of evaluation

Figure 5 Process of evaluation

Figure 7step 2

Figure 9 Step 4

raditional FMEA Rating of 7 – Failure causes a gh degree of customer dissatisfaction.)
Outcome: Permanent lessening of bodily inctioning (sensory, motor, physiologic, or ellectual), disfigurement, surgical intervention quired, increased length of stay for 3 or more tients, increased level of care for 3 or more
<u>Outcome:</u> Hospitalization of 1 or 2 visitors <u>Outcome:</u> Hospitalization of 1 or 2 staff or 3
more staff experiencing lost time or restricted ty injuries or illnesses
re: Not Applicable – See Moderate and

Figure 10 Failure causes

PROBABILITY RATING:

Frequent - Likely to occur immediately or within a short period (may happen several times in

one year)

Occasional - Probably will occur (may happen several times in 1 to 2 years)

Uncommon - Possible to occur (may happen sometime in 2 to 5 years)

Remote - Unlikely to occur (may happen sometime in 5 to 30 years)

		Se	verity		
T		Catastrophic	Major	Moderate	Minor
roba	Frequent	16	12	8	4
abilit	Occasional	12	9	6	3
Y	Uncommon	8	6	4	2
	Remote	4	3	2	1
Re-eva	luation				
- A	B	C DE F G Pr Failure Mode ((Des	H J J stential and Effects Analysis ian FMEA)	K L M	NOPQR

2	System:	Nome/number of system										FMEA Number	Insert FMEA#				
3	Subsystem	Name/number of subsystem	D	esign				_				Page	1	of	1		
4	Component	Name/number of component	Respons	ibility.	Name]				Prepared by:	who	Γ			
5	Model:	model years/programs	Key	Date:	7/15/2018			1				FMEA Date:	7/15/2008				
6	Core Team:	Team members															
7	hem/Function				Potential	8	Current	Current	•			Responsibility	Action F	05	ult 8	5 6	
0	Requirements	Potential Failure Mode	Potential Effect(s) of Failure	Class	Cause(s) / Mechanism(s) of Failure	Occurren	Design Controls Prevention	Design Controls Detection	Detectio	R P N	Recommended Action(s)	& Target Completion Date	Taken & Completion Date	Severity	Occurren	Detectio	R P N
	Name, Part	Manner in which part	Consequences		Listeverv		List	List		88	Design actions	Name of	Actions and				2
	Number or Class	could fail: cracked	on other		potential cause		prevention	detection			to reduce	organization or	actual				2
	realized, or orange	loosened defermed	contone parts		and/or failure		antivition to	activities to			couplib.	individual and	completion				2
		loosened, detormed,	systems, parts,		anayor tanure		acuvines to	acuviues to			seventy,	individual and	completion				3
	Function	leaking, oxidized, etc.	or people:		mechanism:		assure	assure			occurrence and	target	date				8
			noise, unstable,		incorrect		design	design			detection	completion					2
			inoperative,		material,		adequacy	adequacy			ratings. Severity	date					8
			impaired, etc.		improper		and prevent	and prevent			of 9 or 10						8
					maintenance.		or reduce	or reduce			requires special						
9					fatigue, wear, etc.		occurrence.	occurrence.		0	attention.						0
10				+		H			-	0				H	H	+	0
11				+		-			-	0				+	H		0
12				+		-				0				t	H		0
13				+						0				H	H		0
14				+		-				0							0

		Se	everity		
-		Catastrophic	Major	Moderate	Minor
roba	Frequent	16	12	8	4
abilit	Occasional	12	9	6	3
Y	Uncommon	8	6	4	2
	Remote	4	3	2	1

		Step 4 - Ha	izard A	Inalys	is						Step 5 - Identi	ity Actions and Outco	mes	
Failure Mode: First Evaluate failure mode before determining potential causes			S	corin	9	Decision Tree Analysis								
		Potential Causes	Severity	Probability	Haz Score	Single Point Weakness?	Existing Control Measure ?	Detectability	Proceed?	Action Type (Control, Accept, Eliminate)	Actions or Rationale for Stopping	Outcome Measure	Responsible	Management
1A(1)	Turn off alarm		major	occasional	9	1	N	N	Y					
		1A(1)# Missed snooze button	m ajor	occasional	9	1	N	N	Y	Eliminate	Purchase new clock	Purchase by certain date xx/xx/xx	YOU	Yes